KK's blog

每天积累多一些

0%

LeetCode 1761 Minimum Degree of a Connected Trio in a Graph

LeetCode



You are given an undirected graph. You are given an integer n which is the number of nodes in the graph and an array edges, where each edges[i] = [u<sub>i</sub>, v<sub>i</sub>] indicates that there is an undirected edge between u<sub>i</sub> and v<sub>i</sub>.

A connected trio is a set of three nodes where there is an edge between every pair of them.

The degree of a connected trio is the number of edges where one endpoint is in the trio, and the other is not.

Return the minimum degree of a connected trio in the graph, or -1 if the graph has no connected trios.

Example 1:



Input: n = 6, edges = [[1,2],[1,3],[3,2],[4,1],[5,2],[3,6]]
Output: 3
Explanation: There is exactly one trio, which is [1,2,3]. The edges that form its degree are bolded in the figure above.


Example 2:



Input: n = 7, edges = [[1,3],[4,1],[4,3],[2,5],[5,6],[6,7],[7,5],[2,6]]
Output: 0
Explanation: There are exactly three trios:
1) [1,4,3] with degree 0.
2) [2,5,6] with degree 2.
3) [5,6,7] with degree 2.


Constraints:

2 <= n <= 400 edges[i].length == 2
`1 <= edges.length <= n (n-1) / 2*1 <= ui, vi <= n*ui != vi`
* There are no repeated edges.

题目大意:

给定一个图,trio是三个节点直接互相相连,而度数表示连着trio的边的个数

解题思路:

根据定义,找出所有三个节点的组合,判断是否trio,然后根据trio的每个节点的度数总和 - 6即为所求
遍历所有三个节点组合时,会重复了两次。所以一个优化是,先按度数排序节点,若节点度数大于等于最小度数除以3,跳出循环。因为这个最小度数的节点已经大于等于3,trio里其他两个度数比它大的节点的度数更加会大于最小度数除以3,这样总度数肯定大于此时的最小度数

解题步骤:

N/A

注意事项:

  1. 根据定义,找出所有三个节点的组合u -> v, v -> w, w是否在u中,判断是否trio。先按度数排序节点,若节点度数大于等于最小度数除以3,跳出循环
  2. 邻接图用set,因为Line 13查找w是否在u中可以提高效率
  3. min_degree / 3不是// 3

Python代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def minTrioDegree(self, n: int, edges: List[List[int]]) -> int:
graph = collections.defaultdict(set) # use set coz if w in graph[u]
for u, v in edges:
graph[u].add(v)
graph[v].add(u)

min_degree = float('inf')
for u in sorted(range(1, n + 1), key=lambda x: len(graph[x])):
if len(graph[u]) >= min_degree / 3: # remember / 3 not // 3
break
for v in graph[u]:
for w in graph[v]:
if w in graph[u]:
min_degree = min(min_degree, len(graph[u]) + len(graph[v]) + len(graph[w]))
return min_degree - 6 if min_degree != float('inf') else -1

算法分析:

时间复杂度为O(n3),空间复杂度O(n2)

Free mock interview