You are given a 0-indexed array of positive integers
w
where w[i]
describes the weight of the i<sup>th</sup>
index.You need to implement the function
pickIndex()
, which randomly picks an index in the range [0, w.length - 1]
(inclusive) and returns it. The probability of picking an index i
is w[i] / sum(w)
.For example, if
w = [1, 3]
, the probability of picking index 0
is 1 / (1 + 3) = 0.25
(i.e., 25%
), and the probability of picking index 1
is 3 / (1 + 3) = 0.75
(i.e., 75%
).Example 1:
Input
[“Solution”,”pickIndex”]
[[[1]],[]]
Output
[null,0]
Explanation
Solution solution = new Solution([1]);
solution.pickIndex(); // return 0. The only option is to return 0 since there is only one element in w.
Example 2:
Input
[“Solution”,”pickIndex”,”pickIndex”,”pickIndex”,”pickIndex”,”pickIndex”]
[[[1,3]],[],[],[],[],[]]
Output
[null,1,1,1,1,0]
Explanation
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // return 1. It is returning the second element (index = 1) that has a probability of 3/4.
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 0. It is returning the first element (index = 0) that has a probability of 1/4.
Since this is a randomization problem, multiple answers are allowed.
All of the following outputs can be considered correct:
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
……
and so on.
Constraints:
1 <= w.length <= 10<sup>4</sup>
1 <= w[i] <= 10<sup>5</sup>
pickIndex
will be called at most 10<sup>4</sup>
times.题目大意:
根据数组每个元素的weight来决定其出现的概率: weight/sum of weight
解题思路:
模拟运算过程,先求和,然后根据上述公式分配概率: 如[1, 3], 小于0.25属于第一个元素,大于属于后一个元素,我们不用小数,还原回整数
所以数值小于1属于第一个元素,大于1小于4属于后一个,想到用presum,然后在presum搜索某个value,就想到二分法。
解题步骤:
N/A
注意事项:
- random.randint前闭后闭
Python代码:
1 | class Solution(TestCases): |
算法分析:
时间复杂度为O(1ogn)
,空间复杂度O(n)