KK's blog

每天积累多一些

0%

LeetCode 528 Random Pick with Weight

LeetCode



You are given a 0-indexed array of positive integers w where w[i] describes the weight of the i<sup>th</sup> index.

You need to implement the function pickIndex(), which randomly picks an index in the range [0, w.length - 1] (inclusive) and returns it. The probability of picking an index i is w[i] / sum(w).

For example, if w = [1, 3], the probability of picking index 0 is 1 / (1 + 3) = 0.25 (i.e., 25%), and the probability of picking index 1 is 3 / (1 + 3) = 0.75 (i.e., 75%).

Example 1:

Input
[“Solution”,”pickIndex”]
[[[1]],[]]
Output
[null,0]

Explanation
Solution solution = new Solution([1]);
solution.pickIndex(); // return 0. The only option is to return 0 since there is only one element in w.


Example 2:

Input
[“Solution”,”pickIndex”,”pickIndex”,”pickIndex”,”pickIndex”,”pickIndex”]
[[[1,3]],[],[],[],[],[]]
Output
[null,1,1,1,1,0]

Explanation
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // return 1. It is returning the second element (index = 1) that has a probability of 3/4.
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 0. It is returning the first element (index = 0) that has a probability of 1/4.

Since this is a randomization problem, multiple answers are allowed.
All of the following outputs can be considered correct:
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
……
and so on.


Constraints:
1 <= w.length <= 10<sup>4</sup>
1 <= w[i] <= 10<sup>5</sup> pickIndex will be called at most 10<sup>4</sup> times.

题目大意:

根据数组每个元素的weight来决定其出现的概率: weight/sum of weight

解题思路:

模拟运算过程,先求和,然后根据上述公式分配概率: 如[1, 3], 小于0.25属于第一个元素,大于属于后一个元素,我们不用小数,还原回整数
所以数值小于1属于第一个元素,大于1小于4属于后一个,想到用presum,然后在presum搜索某个value,就想到二分法。

解题步骤:

N/A

注意事项:

  1. random.randint前闭后闭

Python代码:

1
2
3
4
5
6
7
8
9
10
11
12
class Solution(TestCases):

def __init__(self, w: List[int]):
self.presum = []
sum = 0
for n in w:
sum += n
self.presum.append(sum)

def pickIndex(self) -> int:
rand_value = random.randint(0, self.presum[-1] - 1)
return bisect.bisect(self.presum, rand_value)

算法分析:

时间复杂度为O(1ogn),空间复杂度O(n)

Free mock interview