Given an integer array
nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.A subarray is a contiguous part of an array.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
Constraints:
1 <= nums.length <= 10<sup>5</sup>
-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup>
Follow up: If you have figured out the
O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.题目大意:
最大子数组和
算法思路:
dp[i] = max(dp[i-1] + nums[i], nums[i])
注意事项:
- 引入全局最大的res,因为递归式是以末位为结尾的最大和
Python代码:
1 | # dp[i] = max(dp[i-1] + nums[i], nums[i]) |
算法分析:
时间复杂度为O(n)
,空间复杂度O(1)