Given an array of positive integers
nums
and a positive integer target
, return the minimal length of a contiguous subarray [nums<sub>l</sub>, nums<sub>l+1</sub>, ..., nums<sub>r-1</sub>, nums<sub>r</sub>]
of which the sum is greater than or equal to target
. If there is no such subarray, return 0
instead.Example 1:
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: target = 4, nums = [1,4,4]
Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1]
Output: 0
Constraints:
1 <= target <= 10<sup>9</sup>
1 <= nums.length <= 10<sup>5</sup>
1 <= nums[i] <= 10<sup>5</sup>
*Follow up: If you have figured out the
O(n)
solution, try coding another solution of which the time complexity is O(n log(n))
.算法思路:
N/A
注意事项:
- 求最小值,所以min_len初始化最大值
- 长度为i - j + 1写例子来计算
Python代码:
1 | def minSubArrayLen(self, target: int, nums: List[int]) -> int: |
算法分析:
时间复杂度为O(n)
,空间复杂度O(1)