Given the root of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key. Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [2,1,3] Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6] Output: false Explanation: The root node’s value is 5 but its right child’s value is 4.
Constraints: The number of nodes in the tree is in the range [1, 10<sup>4</sup>]. * -2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1
// Recommended method: use min max and devide & conquer publicbooleanisValidBST2(TreeNode root){ return isValid(root, Long.MIN_VALUE, Long.MAX_VALUE); }
// val can be Integer.Min so use long publicbooleanisValid(TreeNode root, long min, long max){ if(root == null) returntrue; if(min >= root.val || max <= root.val) returnfalse; return isValid(root.left, min, root.val) && isValid(root.right, root.val, max); }